Curso: Engenharia Elétrica — Sistemas Elétricos de Potência

Disciplina: Transmissão de Energia Elétrica em Corrente Contínua

Código: TEE-00171 Carga horária

Teórica: 60 Prática: 0 Total: 60

OBJETIVO: FORNECER AOS ALUNOS CONHECIMENTOS SOBRE PRINCIPIOS DE

ENGENHARIA E DE TECNOLOGIA DE SISTEMAS DE TRANSMISSÃO EM

CORRENTE CONTÍNUA EM ALTA TENSÃO – CCAT.

EMENTA: Princípios de Conversão. Elementos de Eletrônica de Potência. Aplicações e

viabilidade econômica. Esquemas de Transmissão. Funcionamento como retificador e inversor. Compensação Reativa. Harmônicos e Filtros de CA. Principais equipamentos e chaves de um sistema CCAT. Filtros de CC. Linha de

transmissão e eletrodo. Sistemas de Controle e Proteção.

PRÉ-REQUISITOS:

Transmissão de Energia Elétrica I, Eletrônica Básica e Eletrônica de Potência.

HABILIDADES E COMPETÊNCIAS DESENVOLVIDAS:

Número	Habilidades e Competências	Desenvolvida na Disciplina? Marque X caso seja desenvolvida ou deixe em branco caso contrário
I	Aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à engenharia	X
II	Projetar e conduzir experimentos e interpretar resultados	
III	Conceber, projetar e analisar sistemas, produtos e processos	x
IV	Planejar, supervisionar, elaborar e coordenar projetos e serviços de engenharia	
V	Identificar, formular e resolver problemas de engenharia	
VI	Desenvolver e/ou utilizar novas ferramentas e técnicas	X
VII	Supervisionar a operação e a manutenção de sistemas	
VIII	Avaliar criticamente a operação e a manutenção de sistemas	x
IX	Comunicar-se eficientemente nas formas escrita, oral e gráfica	
X	Atuar em equipes multidisciplinares	x
XI	Compreender e aplicar a ética e responsabilidade profissionais	
XII	Avaliar o impacto das atividades da engenharia no contexto social e ambiental	x
XIII	Avaliar a viabilidade econômica de projetos de engenharia	x
XIV	Assumir a postura de permanente busca de atualização profissional	X

Programa Pleno (60 módulos)

1. Introdução (4 módulos de 50 min)

- 1.1. Princípios de Conversão.
- 1.2. Elementos de Eletrônica de Potência.
- 1.3. Sistema de refrigeração
- 1.4. Sistema de disparo

2. Aplicações e viabilidade econômica. (4 módulos de 50 minutos)

- 2.1. Aplicações de sistemas CCAT
- 2.2. Comparação entre CCAT e CAAT
- 2.3. Impacto Ambiental

3. Esquemas de Transmissão (6 módulos de 50 minutos)

- 3.1. Sistema Monopolar
- 3.2. Sistema Bipolar
- 3.3. Back-to-Back
- 3.4. Multiterminais

4. Funcionamento como retificador e inversor (12 módulos de 50 minutos)

- 4.1. Conversor de 6 e 12 pulsos
- 4.2. Formas de onda de tensão e corrente
- 4.3. Equações básicas
- 4.4. Ângulos notáveis no funcionamento como retificador e inversor

Compensação Reativa, Harmônicos e Filtros de CA. (6 módulos de 50 minutos)

- 5.1. Compensação reativa nos conversores de CCAT
- 5.2. Banco de Capacitores
- 5.3. Harmônicos
- 5.4. Filtros de CA

Principais equipamentos e chaves de um sistema CCAT. (10 módulos de 50 minutos)

- 6.1. Transformador Conversor
- 6.2. Válvulas a tiristores
- 6.3. Reator de alisamento
- 6.4. Chaves e disjuntores
- 6.5. Pára-raios.

7. Filtros de CC. (4 módulos de 50 minutos)

- 7.1. Harmônicos de CC
- 7.2. Filtros de CC

8. Linha de transmissão e eletrodo. (4 módulos de 50 minutos)

- 8.1. Linha de Transmissão de CC
- 8.2. Eletrodo de Aterramento

9. Sistemas de Controle e Proteção (4 módulos de 50 minutos)

- 9.1. Sistemas de controle de tensão, corrente e potência.
- 9.2. Proteções de sistemas de CCAT

10. Avaliações (6 módulos de 50 minutos)

10.1. Avaliações semestrais

TOTAL DE MÓDULOS: 60

Bibliografia Básica

- Direct Current Transmission, Vol. I, E. W. Kimbark, Wiley, 1971.
- High Voltage Direct Current Transmission, J. Arrilaga, Peter Peregrinus, 1983.
- HVDC Transmission Proven Technology for Power Exchange- Siemens, 2011.